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A class of problems of terminal control of multi-dimensional systems reducible 
to one-dimensional is investigated. Similar problems of time-optimal response 

for autonomous and nonautonomous systems were considered, for instance, in 
[l]. The solution derived here is based on sufficient conditions of the dynamic 

programming method [a]. Ways are developed for the derivation of an analy- 
tic solution of the problem of synthesis and, also, for the determination of op- 
timal-phase trajectory and of programmed control. Problems of energy-optim- 
al consumption for stabilizing the rotations of a dynamically symmetric solid 

body using a limited power motive system are solved [3]. 

1. S t a t e m e n t o f t h e p r o b 1 e m. We consider the controlled system 

$ = f (t, z) + b (t, h) S (t, z):>u, h = 15 1, z (to) = 50 (I.11 

where 5 is the m-vector of the phase state whose values are contained in some neigh- 
borhood of point 5 = 0 which includes the initial point x0:0; t E [to, T] is the time 
and T a specified quantity; i is the n-vector of control, b > b. > 0 is a scalar, 

s is an orthogonal (n i< n) -matrix: S-1 = s’. Functions f, b and s are assum- 
ed to be fairly smooth and such that the substitution of the admissible continuous contr- 
ol u (t) which at instant t = T bring the phase point to the coordinate origin x = 

0 yields the unique solution z (t, [u]) (LT (T, [u] ) = 0) for system (1.1). It 
is further assumed that the vector function f (t, x) has the property [I] 

q’f (t, z) = a (t, h), Tl = z / h 

We pose the following problem of optimal control of system (1.1): 

(1.2) 

z(T) = 0, J [u] = s’ u2 dt 3 min, (1.31 

to 

No additional constraints are imposed at this stage on the control function u . The 
physical meaning of the criterion of performance of control (1.3) may be defined as 
the minimization of energy consumed by the control, in which case the quantity u* 

represents the expended power [3]. 
We have to determine the optimal control in the form of synthesis of u (t, z) 

which at the specified instant of time t = T *brings the phase point of system (1.11 
to the coordinate origin z (T) = 0, provides the optimal phase trajectory z (f, to, 
ZO), and minimizes functional J (1.3). 

Solution of the stated problem is constructed using the sufficient conditions of 
optimality of the dynamic programming method [2]. Applying the device similar to 
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that set forth in [I] it is possible to show that the solution of problem (1. I), (1.3) with 
condition (1.2) consists of solving some terminal control problem for the scalar varia- 

ble h . Thus, by multiplying system (1.1) on the left by ?] ‘ we obtain the equation 

h’ = a (t, h) + b (t, h)q’u, h (to) = ho, 12 (7’) = 0 ( 1.4) 

where u is the new control 

v = S(t, LX) u (U = S’U), J [u] = J [v] = r u? dt ---> mirt, (1. 5) 
lo 

It follows from (1.4) and (1.5) that J + minv when u = wq, where w is the 
unknown scalar control such that J [WI --f min,,. As the result, we obtain the term- 
inal control problem 

h’ = u (t, h) -I- b (t, h) ELI, h (to) -= h, (1.61 

h(T)Jl, djmj--~widt->~i~i,,,, 
f. 

which by using the dynamic programming method is reduced to solving the Cauchy 
problem for Bellman’s function li (t, h) 

dV / & + a (t, h) dl/ / dh - l/*~~(t, h)(dFi / 8~)’ =z 0 (1.7) 
w (t, h) = --‘i, b(t, /L)LW I dh, V (I’, h(T)) = V (T, 0) = 0 

The Cauchy problem for the input control problem (1. I) -( 1.3) reduces to an eq- 
uation of the form (1.7), since the equation and the boundary condition for Bellman’s 

function W (t, GC) of the input control problem (1.1) - ( 1.3) 

dW ,’ dt + dW / 6% f (I, CT) - lj4b” (i, h)(dW / dx)2 = 0 (1.8) 

~‘(t, L-C-) = --l/‘,b (t, h)dW ,’ d.c, 5% (Z’, x (T)) = W (T, 0) = 0 

imply thdt 
W (t, z) = V (t, h), r3FV / dx = dV/ dhq’ (1.9) 

22 (t, x) = --I/‘,b (t, h) dV I ahq = wrl 
The substitution of (1.9) into (1.8) yields problem (1.7), hence a solution of (I, 7) 

also satisfies (1.8) and in accordance with (1.5) and (1. 9) it synthesizes the solution 
of the control problem (1.1) - ( 1.3). 

2. Derivation of the optimal synthtsia, Itisnotg~erally 
possible to obtain a solution for the control problem (1.6) or for the Cauchy problem 
in the case of arbitrary functions a (t, h) and b (t, h). The following algorithm for 
solving the problem of synthesis, based on the necessary conditions of the maximum 

principle, is proposed on the assumption that these two functions are piecewise different- 
iable with respect to h, h E 10, ho] and continuous with respect to t, t E [to, 2’1. 
When applied to problem (1.6) these conditions are of the form 

H -== -w2 -j- (a + bw)p -+ max, (2‘ 1) 

h’ ‘= a (t, h) + b (t, h)w, h (to) = ho h (T) = 0 

p’ = -p (aa. I ah + ab I ah w), p (T) = PT 
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The maximum value H* of Hamiltoman H is 

H* = pa (t, h) + ‘/~p’b’(t, h), w* = l&b (t, h) (2.2) 

and the equality 

H*(t) &f*(T)--1%I*&‘, g=pg++p2b$ (2.3) 
t 

holds for the solution of system (2.1) 111. 
It is assumed below that h and the conjugate variable p are known from the 

solution of system (2.1) for w = w* 

h” = I2 (t, to, ho), p” = p (t, to, ho) (2.4) 

The programmed and positional controls ~7,) and w, , respectively, determined 
in conformity with (2.2), are 

w& to, ho) = ?‘g (t, to, ho) b (t, h (t, tu, ho)) 

w, (t, h) = w,, (t, t, h) = ‘/2 P (t, t, h) b (t, W 

(2.5) 

Minimum value of functional J* and the Bellman function V are similarly deter- 
mined 

J* =: V (to, h,) = i a$@, to, h,) dt, V (t, h) = j up2 (z, t, h) dz (2.6) 
t 

The substitution of optimal control U* = w*s’q into (1.1) yields the Cauchy 

problem in ordinary differential equations whose analytic solution can be obtained in 
a number of cases on the basis of the general solution of system (1.1) with u z 0. 

Certain particular solutions of problem ( 1.1) - (1.3) are presented below. 
1). Let a = a (t), and b = fi (t); then p = const t and the optimal control 

is determined in conformity with (2.5) as the program and the synthesis 

wr,(t, to, ho) = ‘I$ (t)p (to, ho), ws (t, 4 = l/2/3 (t)p (t, h) (2.7) 

P* == p(to,hl) = - 2 [hcl + i a(t)dt] /{ 8yt)dt 
lo 

‘Ihe minimal value of functional J* and the Bellman function V , determined 
with the use of (2.6) and allowance for (2. ‘0, are 

T T 

J* = V (to, ho) = $1 J3” (t) dt, v (t, h) = (2. a 

fr 1 

Direct differentiation shows that function V is the solution of (1.7) and (1.8). 
The substitution of w, (t, h) defined by (2.7) into(2.1) yields a linear equation of 

motion for h with feedback. Its solution is obtained in the form of quadrature 

h G, to, h0) = [ho -I- la(t~~t]~B’(i)drljP’(t)dr-jo(r)di (2.9) 
to t 
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It follows from(2.9) that for any to, T (to < T), ho we have h (T, to, ho) = 
0. 

After the substitution of the expression U* = w*S’q into (1.1) the construction 
of the optimal phase trajectory IZ: (t, to, x0) reduces to solving the Cauchy problem. 
Let f (t, 5) = g (5) -/- a (t)q, where a is a scalar and q’g (x) = 0,i.e. g is 
the vector of gyroscopic forces [l] and g (5) is a homogeneous function of z of power 

m > 1: g &) = Pg(z). The system (1.1) for the phase vector 5 with feedback 

~.=g(.~)~“(l)rl-B’(t)9[h+S a(z)dt] /iB”(T)dt, ~Vo)=so (2.10) 
t t 

is reduced by the substitution z = hz to the form of a system with invariant norm [l] 

dz 
t 

- = g(z), 
ds 

s = h”-‘(t, to, h,) dt, s z (0) = zo = q,,, 1 z 1 = 1 (2.11) 

to 

If the general solution of system (2.10) is known for a = p G 0: 1c’ = g (z), 
cc (to) = zo and is given in form x = cp (,$ - to, c, ho) , where c may, for in- 

stance, be the vector of directional cosines, c = q 0, the solutions of Eqs. (2.11) 
and (2.10) are, respectively, of the form 

2 = cp ts, so, I), J: = h (t, to, ho) cp (s, qo, 1) 

The phase trajectory in the case of f (t, 5) = 6 (t) g (z) -+ a (t) 7, where 
6 (r) is a scalar function, is determined in a similar manner. In that case 6h”+’ 

appears in the integrand of the expression for s in (2.11). 

2). Let now a (t, h) = y (t)h + a (t) and b (t, h) = p (t); the optimal 
program wP and synthesis wS are then of the form 

w,(t, to, ho) = ‘/,S (0 PT (to, ho) I’ (T, 0 (2.12) 

w, (6 h> = l/2@ (OPT (t, h) r’ CT, 0 

pT * = pT(to, ho) = -2 [hoI’ (T, to) + -4 (T, to)] B (T, to) 

I’(T, t) = exp [i y(t)&], A(T,t,) = i’u(t)r(T,t)dt 
t lo 

T 

B (T, to) = 5 B” (t) r” (T, t) dt 
1. 

The minimal value of functional J (1.3) is then determined on the basis of the 
first of formulas (2.6) 

J* = V (to, .ho) = V4p? (to, ho), B (T, te) (2.13) 

In conformity with (2.6) Bellman’s function V is 

v (t, h) = [hr (T, t) + A (T, 01” / B (T, 0 (2.14) 

The substitution of expression (2.14) into (1.7) and (1.8) shows that V is the sought 

Bellman’s function. The absolute value of vector 5 is a function Of h when 
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W* = Ws (8, h) and in conformity with Eq, (2.1) decreases with negative linear feed- 
back whose coefficient increases indefinitely when t --t 2’. The solution of that equa- 
tion is of the form 

h (t, to, ho) = ho [I? (t, to) - ( 2.15) 

I’ (T, t)IY (T, to) B (t, to) / B (T, to)1 + A (f, fo) - 

I’ (T, f) A (T, to) B (t, to) f B (T, to) 
which implies that h (T, to, ho) = 0 for any to, T, and ho. 

The optimal phase trajectory 2 (t, to, 20) is obtained by integrating a Cauchy 
problem similar to (2.10) after substitution of the expression U* = w*s’q into (1.1). 
In investigations of certain applied problems (see Sect. 4 ) function f is of the form 
f (t, 3) = 6 (~)g(~~ f y (t)s f cc (t)q (6, y, and cc are scalar functions), 

where g is the gyroscopic vector. The optimal trajectory 

x=hz, z= ‘P (s, qor I), 8 = 16 (r) h”‘-’ (c to, ho) dr 
to 

is derived in a manner similar to that used in Sect. 1 above, Then, on the basis of 
the expression for the vector function z (t, to, zo) , we obtain the control U* in 
the form of a program. 

3). When a = cc (h) and b = f3 (h), where a and /3 are fairly smooth, for 
instance continuously differentiable functions h, h E [0, hoI, the solutionofproblem 
(1.6) is derived as follows, Since according to (2.3) the Hamiltonian H* (2.2) 

H*(f) = .H*( 2’) = l/*~~~~s(O) 1- pTa (0) 

is constant, hence for p we have the expression 

P = P (h, PT) = -_I2 / fP(h)l{a (h) F [aa (h) + H*(T)pB (h)lt’a} (2.16) 

The vitiation of (2.16) into w* and then into (2.1) yields for h the equation 
with separating variables 

h . 

.+1’ I! 
dl 

[a2 (I) + H* (T) p @)I' ‘z = t 
- to 

o 
(2.17) 

which shows that the plus sign is to be taken in formula (2.16) for p. 
Since h (T) = 0, pT is the root of Eq. (2.171 when t = T and h = 0. We 

substitute the obtained expression pi* = pr(T - to, ho) into (2.16) and, as the 
result, obtain the control w* in the form of synthesis w, (2’ - t, h) = ‘/8 (h)P 
(h, PT (T - t, h)). The implicit function h (t - to, T - to, ho) is defined 

by the quadrature (2.17) after the substitution pT* = PT (T - to, la,,). Using form- 

ulas (2.5) and (2.6), and the previously described scheme it is possible to derive the 
optimal control wP (t - toy T - to, ho), the ~nimum value of functional J* 
and the Bellman function tf , and the optimal phase trajectory 2. If f (t, X) = 

6 (t)g (a$, i. e. a = 0, then p = pT p (0) / B (h), where 

PT = - 

he *s*=- 
0 

h 
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The synthesis of control wS and the formula for h are of the form 
h h 

1 
ws(T- t,h) = -- T--t 

and the phase trajectory x is defined by the system of equations with feedback 

The ~bsti~tion of II: = zh with ] z 1 = 1 yields a Cauchy problem for equat- 
ions with invariant norm (2.11). The order of that system may be lowered by two, and 
in a number of applied problems its integration can be carried out to the end (see Sect. 

4). 

3. Generalization of the problem of terminal contr- 
o 1. The multi-dimensional optimal control problem can be reduced to a one-dimen- 

sional of the type (1.6) in a more general case. Let, for example, the system of 
equations of motion be of the form 

2’ = f (t, z, 1 u 1) + b (i, h, 1 zc 1) S (t, cc, u)u, 5 (to) = 30 (3.1) 

where f, b, and 8 are analogous to those considered above. 

We have the problem of bringing the phase pnint of system x from the initialstate 

az (to) = zo on the manifold 

1 r (T) 1 \c M (I 20 I > n/r), I t (T) I > M (1 x0 I < m (3.2) 

in such a way that the functional 
T 

J= F@(T))+! G(U+lW, h = 1x1 (3.3) 
to 

attains the lowest possible value. The control vector u may be subjected to the supp- 
lementary constraint 111 

1 7.4 I < w 1 u 1 = (ulP + * . * + ZQp (3.4) 

Then, using the reasoning of Sect. 1. we obtain the equivalent control problem 

h’ = a (t, h, 1 w 1) + b (6 h, 1 w I) w, h (fd = ho (3.5) 

Iz(T)SM (ho>iM), J =P(h(T))+[ G(t,h,~w~)dt-+ min 
fs Iwl<ua 

The Bellman equation of the input problem (3.1) -(3.4) of optimal control, owing 

to the central symmetry of formulas (3.5) with allowance for conditions of the type 

(1.2) is thus reduced to the form (1.7) 
W 

F+ min 
1 d<w 

(~~a(l,~,lwl~+~~~,~,l~l)~l--~(~,~,/~])} =O, t3.6j 

v (T, h(T)’ _I- P (h (T)), h(T) sji M 
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Let us assume that the terminal control problem (3.5). (3.6) has been solved and 
that the optimal control has been determined in the form of program w, (t, to, ho) 
or by the feedback W,(t, k),using methods of Sect. 2. For the determination of the 
attitude control U,(t, $) we then obtain the final control S (t, CC, u) u = m,(t, 

h)q, 1 u 1 f ~~,frorn which we have function u* = U,(t, cc). If matrix S depends 
only on 1 U 1 or is altogether independent of u , then &(t, 2) = zf&S’(t, 5, 1 w, I)q. 
Co~tmction of optimal phase trajectory is carried out in the manner described in Sect. 
2, on the assumption that f (t, 2, 1 U I) = X (t, 1 U l)g (X) i- U (t, h, 1 u i)q , 

Note that the idealization, as expressed by relations (3.1) -(3.4) is not always 

applicable to practical problems. For instance, relationships of the type (1.2) are, 
as a rule, satisfied with some error 

in which E E f0, eoj is some small quantity and cp (t, X, U) is a bounded funct- 
ion for t E [to, 2’1, 1 z I < 1 50 1, I u I < UO. Other perturbing factors may 
also affect system (3. I.). When the indicated idea~zation is inapplicable, it becomes 

necessary either to estimate such perturbations or derive an approximate solution for 
the terminal control problem taking into account the small parameter 8. 

The problem of control was investigated by methods of the theory of perturbations 

in [4 -61. For autonomous systems of the type (1.1) the author has developed in 

C7,8] a method of derivation of an approximate solution for problems of time-optimal 
response with constraint on control (3.41, which is based on the sufficient conditions 
of optima~ty [2]. 

4. Optimal control of motion of a solid body re1a- 

tive to its center of mass, We consider the problem of control of 

rotations of a dynamically symmetric body in Euler’s case [l, 7,8] 

10; + (f, - f)w,w, = M,, 6.&o) = 010 (4.1) 

Iw,’ - (I, - I)o,ws = M*, o,(to) = 6kJo 

I,08’ = Ma, I, I3 = const, os(te) = 030 

where 1 and fs are the principal central moments of inertia of the body, Mf 
are components of the external moment of forces relative to each of the attached axes, 

and to, ojo are input data (i = 1,2,3). 
1). We begin by considering a control scheme of the kind shown in Fig, 1,where 

(fs, fs) is a pair of fixed motors that produce a moment of forces about the axis of 

symmetry 00 s and ul, f,J is a pair of vernier motors on that axis, which generate 

the moment of control forces about the axes &.o, and 0~s. In the absence of other 

effects we have 
M, = 2Zfl sin $)I n/r, = 21fl co.9 4, M, = 2rf, (4.2) 

o\(f,<f,V o<%<% O,<fs\(fs* 

where 21 and f are the respective linear characteristics of the system. 
It is assumed that the angular velocity 0s rotation of the body about the dynam- 

ic axis of symmetry varies in conformity with the selected control law r&) 
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Fig. 1 

~______l 

-us? -----------_ -I 
Fig. 2 

which, for example, at the specified instant of time t = T brings that velocity to 
the required value WsT. 

Let us consider the problem of optimal extinguishing of vector (or, 61s) 
t 

0s (t) = ao + s WI (z) dr, w,z (T) = 0, J = j (u12 + u2”) dt 3 min (4.3) 
to 

243 = A!&g, u1,2 = MJ, (uo = 2Zj,,I-1) 

If the control force fl in (4.2) is created by a motive power system of limited 
power [3], the functional J in (4.3) has the meaning of energy used by the control. 
The equations of motion (4.1) for wr and ws are reduced to the form 

. 
01 = --y (t)o2 + Ul, 0,' = v (t)o1 + 242 (4.4) 

v (t) = (1, - I)I-10s (t) 

System (4.4) satisfies condition (1.2), and the solution of problem of control with 
condition uo > O~O( T - to)-’ is of the form 

V (1, 0-Q = a,_” (T - t)-l, w* = - wL (T - t)-‘, oL = (ml2 + 092)“r 
(4.5) 

q2 = -coo,,,(T-t)-l 

The optimal phase trajectory and the minimum value of the functional are obtain- 
ed using methods of Sect. 2. They are 

or* =(T-_)(T - to)-l (or0 cos s - w20 sin s) (4.6) 

~$=(~-~)(T-~O)-l(o~osins+~~O~~~~), s=iv(r)dr 

J” = &, mL=~lo(T-t)(T-ttn)-l 

to 

0 

When uo < olo(T - to)-’ the stated problem has no solution. If, however, 
constraint (4.3) on U, and U, is virtually absent, i.e. uo+ 00, then (4.5) and 
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(4.6) imply that when to + T , the programmed controls become delta functions 
[9], while the integral ~nctional becomes divergent: f* --t + 00, and conversely, 
when T -to-F =? P-NO. 

Let us assume that viscous friction forces of the external medium produce a brak- 
ing moment on the symmetric solid body. Then equations of motion of the type (4.4) 
assume the form (see 2) in Sect. 2) 

(nl’ = - v (t)os - yw, + Ul, coa’ = v (0% - Y% + ua (4.7) 

If y = Con&, the solution of the problem of synthesis is of the form 

v V* 03 = 2y6QP(t, T)if - P(t* q-1 (4.8) 
I’ (t, T) = exp y (t - T) 

%,z = WI,&O~, w* = w, (t - T, OJ = - 2WLI’” (t, T) x 
[1 - I-@, T)]‘f 

The optimal phase trajectory, the programmed control, and the minimum of funct- 
ional for system (4.7) are 

WI*= oLw;lg (01~ cos s - a0 sin s), ma* = wloifo (wf0 Sin s + e. cos s) (4.9) 

* = e3J_o{r (to, t) 
a;4 - P(t0, T)]‘} 

- r (to, 23Ir (t, T) - r (to, t)r fts, T)~X 

W* = w& - T, T - to, 0~0) = -2y~~. r (t, q qto, T) x 
r1 - Iyto, zy-1 

J* = 2~qorZ(t0, T)[i - ra(tO, T)]-', S = j V(Z)& 

to 

The validity of the remark that follows formulas (4.6) is confirmed by (4.8) and 
(4.9). Solution (4.8), (4.9) actually holds if control wP does not reach the constraint, 
i, e. 

UO a %a = 2~coJJ (to, T)Ei - qto, T)rx 

if* however, 

u. < u,, = yolor (fo, zw - r (to, 2x-~ (u** < u*) 

then system (4.7) cannot be stabilized within the time interval T - to. In the 
intermediate case of u_ < u. < U, the programmed control is split in two sect- 
ions (see Fig. 2) 

w*== w, (t - T, T - to, aLo) = 
- uor (f, h), to Q t Q tx 
_ uo, 

tx<t<T 

where tl, to < ts < T is a certain instant at which control to, reaches its 
minimum value u. . Note that according to (4.9) the optimal control W, < 0 
has a tendency of decreasing character for t EE [tr, tll , The quantity tl is de- 
termined by the condition that 01 vanishes at t = T. The current value of OJ_ is 
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01 
.L 

= color (to, t) - UJ (0, t) x 

‘12 r (24 tl) - r PO7 Ql, to 6 t < t1 

l/z rr(tI, 0) - r @to, h)l + I’ (4 0) - I’ (h O), tr < t 6 T 

Fig. 3 

Solving the related quadratic equation we obtain 

tI* (to, aLo) = y-l In ir (T, 0) - y0,u;lr (to, 0) + 

w- v, 0) - ~~~~~~~~ (to, 0112 - r2 (to, op) 

At the limit when uo 4 Z-Q*, then tI” 4 to , and when Uo t 1.8, then 
t,* 2‘ T. In the neighborhood of limit values we have the approximate express- 

ions: 

When uo = u** (I + 8) (1 > 8 > 0) we have 

tr*= to + J.G$l [I - r (to, zWr(lh to, xl2 T)+ 0 (e), 

tr* - to = 0 (I/Z) 

and when u. = u*(l - EL) (1 > p > 0) 

fl 
*=T - py-l + 0 (p"), T - tl* = 0 (p) 

2). Let us now consider a scheme of control by a system of limited total motive 
power [I, 3,71 (see Fig. 3). 21 that case the equations of motion (4.1) are of the form 

01’ + XO2W3 = bul, o,(h) = WlO, x = (I, - 01-l 
. 

w2 -NolO = bu2, o&o) = ma,,, b = 2&d-’ 
(4.10) 

w3 * = bgu3, am = 0~0, b, = 2rp18-1 

where ~;1 sz const is the rate of the working substance consumption under saturation 
conditions, UI,~,~ are the reaction stream discharge velocity cfr,,,a = p~.~r,~,s) 
controllable within wide limits, and the power expended on the control is N = ‘f2p 

@la + Uz2 + u32), N < No. The minimized functional which represents the 
system energy E used by the control is 
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T 

E = + s (ur2 + us2 + us2) dt, 
No Ur2+U~2+U32<uo~ = 2 T (4.11) 

to 

We now have the problem of optimal braking the solid body rotations (to bring it 
to rest) at instant of time t = T. Using substitutions 

xl,a = a1,2b-1, x3 = 03b3-‘, x = xb3, E = V%pJ (4.12) 

we reduce problem (4.10). (4.11) to the form (1. l), (1.31, (3.4). The optimal cont- 
rol on condition that uo > ho (T - to)-1 is 

v (1, h) = h*(T - t)-‘, ui* = W*Q, w+ = -h (T - 1)“ 

rli = xih-l, h = 1 zJ (i = 1,2,3) 

It is not possible to stop the rotations of a solid body within the indicated time in- 
terval when uo < ho(T - to)-’ . The optimal phase trajectory and the minimum 
value of functional J are obtained in explicit form 

x1* = hq (i = 1,2,3), h = ho(T - t)(T - to)-1 

21 
* 

= q10 cos s - qeO sin s, z,* = qlo sin s + qso cos s 

=3 
* = ‘Ilso 

s = Xhoqa,(t - ro)(T - to)-YT - ‘/a& + to)], J* = ho* (T - to)-’ 

The input quantities oi* and E *are calculated by inverting formulas (4.12). 
It should be noted that s* = 0 when t = T. The effect of the moment of visc- 
ous friction forces is investigated as in Sect. 1. 
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